Project Part 1

Global Warming.

  1. I downloaded Global Warming data from Our Wolrd In Data. I selected this data because I wanted to see the sea-surface water temperature overtime.

  2. This is the link used fo the data.

  3. The following code chunks loads the package I will use to read in and prepare the data for analysis.

  1. Read the data in
climate_change <- read_csv(here::here("_posts", "2022-05-09-project-part-1","climate-change.csv"))
  1. Use Glimpse to see the names and types of columns.
glimpse(climate_change)
Rows: 10,085
Columns: 20
$ Entity                                  <chr> "Antarctica", "Antar…
$ Date                                    <date> 1992-01-01, 1992-01…
$ `Combined measurements`                 <dbl> NA, NA, NA, NA, NA, …
$ `Seasonal variation`                    <dbl> 418.3103, 425.3770, …
$ `Monthly averaged...5`                  <dbl> NA, NA, NA, NA, NA, …
$ `Annual averaged...6`                   <dbl> NA, NA, NA, NA, NA, …
$ monthly_sea_surface_temperature_anomaly <dbl> NA, NA, NA, NA, NA, …
$ `Sea surface temp (lower-bound)`        <dbl> NA, NA, NA, NA, NA, …
$ `Sea surface temp (upper-bound)`        <dbl> NA, NA, NA, NA, NA, …
$ `Monthly pH measurement`                <dbl> NA, NA, NA, NA, NA, …
$ `Annual average`                        <dbl> NA, NA, NA, NA, NA, …
$ `Temperature anomaly`                   <dbl> NA, NA, NA, NA, NA, …
$ `Church & White`                        <dbl> NA, NA, NA, NA, NA, …
$ `University of Hawaii`                  <dbl> NA, NA, NA, NA, NA, …
$ Average                                 <dbl> NA, NA, NA, NA, NA, …
$ arctic_sea_ice_osisaf                   <dbl> NA, NA, NA, NA, NA, …
$ `Monthly averaged...17`                 <dbl> NA, NA, NA, NA, NA, …
$ `Annual averaged...18`                  <dbl> NA, NA, NA, NA, NA, …
$ `Monthly averaged...19`                 <dbl> NA, NA, NA, NA, NA, …
$ `Annual averaged...20`                  <dbl> NA, NA, NA, NA, NA, …
#view(climate_change)
  1. Use output from glimpse (and view) to prepare the data for analysis
regional_anomaly <- climate_change %>%
  rename(region = 1, temperature_anomaly = `Temperature anomaly`) %>%
  filter(Date >= "1880-01-15", region == "World") %>%
  select(region, Date, temperature_anomaly)

Check that the total for 1880 equals the total in the graph

regional_anomaly %>% 
  filter(Date=="1880-06-15")
# A tibble: 1 × 3
  region Date       temperature_anomaly
  <chr>  <date>                   <dbl>
1 World  1880-06-15                -0.2

Add a picture

picture_climate
write_csv(regional_anomaly, file = "regional_anomaly.csv")