Bootstrapping and Confidence Intervals.
Make sure you have installed and loaded the tidyverse, infer, and fivethirtyeight packages
Fill in the blanks
Put the command you use in the Rchunks in your Rmd file for this quiz.
Look at the variable definitions in congress_age
Set random seed generator to 123
Take a sample of 100 from the dataset congress_age and assign it to congress_age_100
set.seed(123)
congress_age_100 <- congress_age %>%
rep_sample_n(size=100)
congress_age is the population and congress_age_100 is the sample
18,635 is number of observations in the population and 100 is the number of observations in your sample
Response: age (numeric)
# A tibble: 100 × 1
age
<dbl>
1 53.1
2 54.9
3 65.3
4 60.1
5 43.8
6 57.9
7 55.3
8 46
9 42.1
10 37
# … with 90 more rows
Response: age (numeric)
# A tibble: 100,000 × 2
# Groups: replicate [1,000]
replicate age
<int> <dbl>
1 1 42.1
2 1 71.2
3 1 45.6
4 1 39.6
5 1 56.8
6 1 71.6
7 1 60.5
8 1 56.4
9 1 43.3
10 1 53.1
# … with 99,990 more rows
Assign to bootstrap_distribution_mean_age
Display bootstrap_distribution_mean_age
bootstrap_distribution_mean_age <- congress_age_100 %>%
specify(response = age) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "mean")
bootstrap_distribution_mean_age
Response: age (numeric)
# A tibble: 1,000 × 2
replicate stat
<int> <dbl>
1 1 53.6
2 2 53.2
3 3 52.8
4 4 51.5
5 5 53.0
6 6 54.2
7 7 52.0
8 8 52.8
9 9 53.8
10 10 52.4
# … with 990 more rows
visualize(bootstrap_distribution_mean_age)
Assign the output to congress_ci_percentile
Display congress_ci_percentile
congress_ci_percentile <- bootstrap_distribution_mean_age %>%
get_confidence_interval(type = "percentile", level = 0.95)
congress_ci_percentile
# A tibble: 1 × 2
lower_ci upper_ci
<dbl> <dbl>
1 51.5 55.2
obs_mean_age <- congress_age_100 %>%
specify(response = age) %>%
calculate(stat = "mean") %>%
pull()
obs_mean_age
[1] 53.36
Shade the confidence interval
Add a line at the observed mean, obs_mean_age, to your visualization and color it “hotpink”
visualize(bootstrap_distribution_mean_age) +
shade_confidence_interval(endpoints = congress_ci_percentile) +
geom_vline(xintercept = obs_mean_age, color = "hotpink", size = 1 )
Calculate the population mean to see if it is in the 95% confidence interval
Assign the output to pop_mean_age
Display pop_mean_age
[1] 53.31373
visualize(bootstrap_distribution_mean_age) +
shade_confidence_interval(endpoints = congress_ci_percentile) +
geom_vline(xintercept = obs_mean_age, color = "hotpink", size = 1) +
geom_vline(xintercept = pop_mean_age, color = "purple", size = 3)
Save the previous plot to preview.png and add to the yaml chunk at the top